A CLASS OF INVERSE PROBLEMS AND
METHODS OF THEIR SOLUTION

V. A, Morozov UDC 518,12:536.24

The formulation is given of a class of inverse problems which includes a number of inverse
thermophysical problems as a particular case, Algorithms of the solution of such problems
are considered and their qualitative characteristic is given.

1. Direct problems (including thermophysical problems) often admit of the following formulation:
Given two operators A; and A, acting from the same Banach space U into the Banach spaces Fy and Fy,
respectively, find the element u€U satisfying the system of equations

Au=f, Au=f, 1)
where f; and f, are given elements from F; and F,.
The prcblem (1) is called correctly formulated (correct) if:
1) the solution u of the problem (1) exists for any f; € F, and f,€F,;
2) it follows that u = v from the equalities Aju = Ajv, Aju = Ayv, u, vEU;

3) infinitesimal variations of the elements f; and f, result in infinitesimal variations of the solution
u (in the appropriate spaces).

Conditions 1)-3) are known to be satisfied if AjU = Fy, A,U = F, and the operators A; and A, are
linear and the following a priori estimate holds:

lul <kGAu) +]Aul), vucU, k>0

The solution u of the problem (1) is evidently a function of the elements f; and f,, i.e., T =u(f, f,).
The first equation of (1) can be interpreted as the fundamental equation and the second, as the boundary
and (or) initial conditions.

The element f, = x is considered unknown in inverse problems, We have for a fixed element f;:
u =u(fy, x) =), v x€F,, i.e., we have 2 mapping of the space F, into U. Its image does not certainly
coincide with U, and therefore, assigning some u¢U does not always result in the determination of x from
the equation u; (x) = u.

Complete information about the element Ei (x) is usually redundant to the determination of x, In this
connection, the operator B acting from U into the Banach space Y is defined in U, and the element § =
Bu, (x) is measured. The operator B is often the trace operator of the function u€U on manifolds of lower
dimension (or a system of functionals of u). The final formulation of the inverse problem is to solve the
operation equation

Kx=y, @)
where the operator K = Buy(-) acts from F, into Y.

We later consider that f; = 0 and the operators A; and A, are linear. In this case the operator K will
also be linear,
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Example. Let the direct problem consist of determining the temperature u(z, t) of a semi-infinite
homogeneous rod, As is known, its satisfies the following equations:

AWE'?E_B_‘_‘L
U= T o2
0L2<+ 00, 0<ELT,
Ap=ulg=x@), 0LI<LT.

: u1,=o) =f, =@ b, 0@,

The inverse problem consists of determining the temperature x{) on the boundary of the rod z = 0, The
operator B can be defined by different methods, For example, Bu(z, t) =u(z, t), 0 <z < +« or Bu(z, t) =
u(z, T). An L,type space is often selected as the space Y.

The problem of a historical climate is comprised in an analogous scheme,
As a rule, inverse problems are incorrect.

2. Let us call the space ¥y = X the space of states, and the space Y the space of appearances (or
responses).

Equation (2) is the mathematical model of the physical process being studied and expresses the
cause—result relationship between the desired state x and its appearance y.

The following problems occur:

a) estimate the adequacy of the model (2) by means of the measured appearance 37 (it is considered
that the measurements are regular; i.e., correspond to the physical process being studied);

b) indicate an approximate method of determining states close to the theoretically possible x for an
adequate model,

The importance of their solution is indubitable,
Let us first examine problem a),

Following [4], let us call the model (2) consistent if the set of admissible states X= {x:IlKx — ;ll =
6}, where 6 :I[y — yli < 6, is not empty for all 6, Letus set u = l%f)ny — yll. We call the quantity u the
X

measure of incompétibility of 2). Ifu< liyll, then the model (2) is called adequate (y-adequate). If p =0,
we then call the model (2) compatible. If an element x€X exists for which [Kx — ¥l =y, then the model
(2) is called solvable., Let us note that the model can be compatible but not solvable. A solvable model
(2) is called single-valued if the element x is unique,

It is easy to show that for the consistency of the model (2) it is necessary and sufficient that u = 0,
i.e., the model (2) be compatible, If u = 0, then the model (2) is &-solvable in the sense that the sets Xg =
{x€X:IIKx — yl = e}are not empty for any € > 0, i.e., inthis case the model (2) is solvable in practice.

If u = 0, ¥ €Y, then by virtue of the above the model (2) is consistent for any y€Y. We call such
a model absolutely consistent, It is easy to prove that it is necessary and sufficient for this that the
closure of the image Qg of the operator K coincide with ¥, i.e., Qg =Y. The model (2) is then solvable
in practice for all y€Y (see [15]).

In connection with the above, it seems reasonable to consider absolutely consistent mathematical
models.

Let the model (2) be solvable, Will it be single-valued? Not in the general case, The fallacy is
extended that uniqueness of the solution of the inverse problem follows from the single-valuedness of the
direct problem. There is no necessity to prove the inconsistency of this statement. The problem of
uniqueness of inverse problems is an important aspect of the general theory of the solution of incorrect
problems, It is analyzed most completely by M. M. Lavrent'ev and his pupils.

Let us set J =inflKx — yll. It is easy to show [15] that 1y — pl = Iy — yll < 8. It hence follows
xcX
that u ~ g, If u < liyll then evidently also y < Iyl (for small 8).

A stable evaluation of 4 in conformity with the definition is impossible for reasons whose explanation
would require considerable space. Let us limit ourselves to a referral to [5], where this question is re-
solved with a high degree of rigor and an effective algorithm is proposed for the evaluation of approxima-
tions to u which would assure an estimate of the adequacy of the model.
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Let us note that the solution of the problem a) is especially important for the analysis of new mathe-
matical models,

3. Let us turn to the solution of problem b). Let us assume the model (2) to be absolutely consis~
tent. Since the problem (2) is incorrect, the diameter of the set )'E does not tend to zeroas 6 — 0, Mean-
while, this set includes all reasonable states x consistent with the measured f It is necessary to formu-
late the selection rule for such states, The concept of a "reasonable" state has not been defined. In the
general case they may be realizable (or physically accomplishable) states. Needed for their selection is
contraction of the domain of admissible states because of the involvement of additional a priori constraints,

This can be accomplished structurally as follows. A functional 2(x) = 0, x€D; € X is defined on the
part X such that 2(0) = 0 and

: 1 1
Q (%) < 7 Qxy) + - Qxy), X 71

A certain sample state x* ¢D is chosen. Then the functional 2,(x) = 2(x — x*) required can be inter-
preted as a penalty functional and the value 2,(x) as the penalty for the deviation of x from the given state

x*, Naturally UXR = X, where the set is Xg = {x€Dy :24(x) < R}. Here the quantity R characterizes the
R>0
level of the penalty. The functional 22 (x) can also characterize the complexity (smoothness, mathemati-

cally) of the state z = x — x*. Then XR is a set of states not exceeding the admissible level R in com-
nlexity, Often 2(x) = lIixll.

The following selection rule becomes clear from the above: it is necessary to select admissible
states for which the complexity does not exceed the complexity of the proposed true state, This can be
achieved by different means. We now present a few of them.

Method I [6]. Both 6 and R are known. If the set XR,6 = XR N X is not empty, then any element
from XpR s canbe taken as the supporting solution of the problem (2). Mathematically the problem re-
duces to determining the common points of two sets, which have been studied well in the theory of convex
programming.

Method II. Both 6 and R are known, The compromise state ;‘R is selected from the condition

a - 3
% Da:|Kx—3P + —gz—gﬁ (x) — min. @)
Since
TR o OB ) <IKE — G+ o QR <8 S R 28?
| Kxpr—4] T—R—z s (XR) < —‘.’/”T‘Ez‘ 0 (%) < T}?RN ’

i.e., the found state is ;‘R tX\4 R, /26. This shows that the Method 1I is close to the Method I but its rea-
lization is simpler.

A common disadvantage of Methods I and II is the necessity to give both 6 and R simultaneously,

Method ITT (The Residual Method [7, 8]). This consists of selecting that state x5 among the admis~
sible states which possess minimal complexity, i.e.,

x5 € Doz Q, () — min. @)

Evidently | Kxg — 5711 =39, Qi) = QO(}) =R, i.e., x6€XR 5. Knowledge of R is not necessary to the rea-
lization of (4).

rlv\/[ethod IV (The Quasisolution Method [9]). Iet us give the complexity level R and let us define the
state xg from the condition

¥R€ X | Kx — j — min. )
It is easy to see that Qo(;R) =R, IIKER - 37" =9, i.e., ;R EXR 5»
Thus, Methods III and IV can be considered the realization of the Method 1.

Under definite conditions, the solution of problems (6) and (7) by the method of Lagrange multipliers
reduces to a problem of absolute minimization, The selection of the Lagrange multiplier is accomplished
effectively on the basis of algorithms described in [10]. A number of other numerical methods of solving
incorrect problems has been examined in [15].
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4, The so-called method of trials (adjustments) is widespread in the practice of solving inverse
problems., The possible states x;, i =1, 2, ..., s are usually given. Solving the direct problem by the
scheme given in Sec. 1, the elements yj = Kxj, 1 =1, 2, ..., s are determined. Preference is given to
that state x; for which lly; — yll — min,

The simplicity of its realization wins out in this approach. But could it be considered effective ?
No, if the possible states are not selected from a previously assigned bounded class of admissible states,
Here the intuition of the interpreter is usually assumed, i.e., an objective solution of the inverse problem
becomes impossible,

An objective trial method on the basis of the method of quasisolutions has been proposed in [11],

5. Let us examine the selection of the functional Q(x). If the operator K is given inaccurately (and
this is necessary for the realization of any method on an electronic computer), then it is easy to give an
estimate of the form

|Kx —Kx| <v (K, K)Q(x—x*,

where u(IN{, K) — 0 as K — K and is independent of x, but 12 (x) is often the norm of some derivative of the
function x. It is then natural to set 2,(x) = 2(x — x*). This question is elucidated more completely in

2]

The functional is usually 2 (x) = (Cx, x)i/ % for a finite-numerical realization, where x = (X4, Xgy oae
xp) is the desired vector solution and C is a positive-definite matrix.

Then the Method II reduces to solving the system of equations

2 ~
—;—2 Cx—x%+ K Kx=K"y. (6)
The element x* can be interpreted as the "mean" among the possible states which is obtained from direct
measurements, for example, and the matrix R2C™! as the "correlation” matrix expressing the degree of
dependence of components of the vector x (smoothness). It is easy to see that the method II is a deter-
ministic analog of the Bayes regularization method proposed in [13]. Inthis connection let us turn atten-
tion to the error in the viewpoint of the authors of [14], who contrasted randomized schemes of the regular-
ization method to the deterministic schemes, )

In conclusion, let us note that the Methods I-IV possess optimality properties in the sense of unim-
provability of the order of the accuracy of the approximations they provide [15].
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